
si hacemos coincidir el centro con el origen de coordenadas, las coordenadas de cualquier punto de la circunferencia (x, y) determina un triángulo rectángulo, y por supuesto que responde al teorema de Pitágoras: r2 = x2 + y2. Puesto que la distancia entre el centro (a, b) y uno cualquiera de los puntos (x, y) de la circunferencia es constante e igual al radio r tendremos que: r2 = (x – a)2 + (y – b)2 Llamada canónica podemos desarrollarla resolviendo los cuadrados (trinomio cuadrado perfecto) y obtenemos
x2 + y2 – 2ax –2by – r2 = 0.
Si reemplazamos – 2a = D; – 2b = E; F = a2 + b2 – r2 tendremos que:
x2 + y2 + Dx + Ey + F = 0
Ejemplo: Si tenemos la ecuación x2 + y2 + 6x – 8y – 11 = 0
Entonces tenemos que: D = 6 Þ 6 = – 2a Þ a = – 3
E = – 8 Þ – 8 = – 2b Þ b = 4
El centro de la circunferencia es (– 3, 4). Hallemos el radio
F = (– 3)2 + 42 – r2 Þ – 11 = (– 3)2 + 42 – r2 Þ r = 6
La ecuación de la circunferencia queda: (x + 3)2 + (y – 4)2 = 36
No hay comentarios:
Publicar un comentario