sábado, 30 de mayo de 2015

HIPERBOLE

Una hipérbola es una sección cónica, una curva abierta de dos ramas obtenida cortando un cono recto por un plano oblicuo al eje de simetría, y con ángulo menor que el de la generatriz respecto del eje de revolución






Ecuaciones en coordenadas cartesianas: Ecuación de una hipérbola con centro en el origen de coordenadas (0, 0) \, y ecuación de la hipérbola en su forma canónica: 
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
Ecuación de una hipérbola con centro en el punto (h, k) \,
\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1
Ejemplos:
a)
\frac{(x)^2}{25} - \frac{(y)^2}{9} = 1
b)
\frac{(y)^2}{9} - \frac{(x)^2}{25} = 1
Si el eje x es positivo, entonces la hipérbola es horizontal; si es al revés, es vertical. La excentricidad de una hipérbola siempre es mayor que uno.
https://www.youtube.com/watch?v=zMDjlUlArqI
https://youtu.be/6jP3VRiEa-o

No hay comentarios:

Publicar un comentario